1,317 research outputs found

    Vortex lattice stability and phase coherence in three-dimensional rapidly rotating Bose condensates

    Full text link
    We establish the general equations of motion for the modes of a vortex lattice in a rapidly rotating Bose-Einstein condensate in three dimensions, taking into account the elastic energy of the lattice and the vortex line bending energy. As in two dimensions, the vortex lattice supports Tkachenko and gapped sound modes. In contrast, in three dimensions the Tkachenko mode frequency at long wavelengths becomes linear in the wavevector for any propagation direction out of the transverse plane. We compute the correlation functions of the vortex displacements and the superfluid order parameter for a homogeneous Bose gas of bounded extent in the axial direction. At zero temperature the vortex displacement correlations are convergent at large separation, but at finite temperatures, they grow with separation. The growth of the vortex displacements should lead to observable melting of vortex lattices at higher temperatures and somewhat lower particle number and faster rotation than in current experiments. At zero temperature a system of large extent in the axial direction maintains long range order-parameter correlations for large separation, but at finite temperatures the correlations decay with separation.Comment: 10 pages, 2 figures, Changes include the addition of the particle density - vortex density coupling and the correct value of the shear modulu

    Tkachenko modes of vortex lattices in rapidly rotating Bose-Einstein condensates

    Full text link
    We calculate the in-plane modes of the vortex lattice in a rotating Bose condensate from the Thomas-Fermi to the mean-field quantum Hall regimes. The Tkachenko mode frequency goes from linear in the wavevector, kk, for lattice rotational velocities, Ω\Omega, much smaller than the lowest sound wave frequency in a finite system, to quadratic in kk in the opposite limit. The system also supports an inertial mode of frequency ≥2Ω\ge 2\Omega. The calculated frequencies are in good agreement with recent observations of Tkachenko modes at JILA, and provide evidence for the decrease in the shear modulus of the vortex lattice at rapid rotation.Comment: 4 pages, 2 figure

    Vortex lattices in rapidly rotating Bose-Einstein condensates: modes and correlation functions

    Full text link
    After delineating the physical regimes which vortex lattices encounter in rotating Bose-Einstein condensates as the rotation rate, Ω\Omega, increases, we derive the normal modes of the vortex lattice in two dimensions at zero temperature. Taking into account effects of the finite compressibility, we find an inertial mode of frequency ≥2Ω\ge 2\Omega, and a primarily transverse Tkachenko mode, whose frequency goes from being linear in the wave vector in the slowly rotating regime, where Ω\Omega is small compared with the lowest compressional mode frequency, to quadratic in the wave vector in the opposite limit. We calculate the correlation functions of vortex displacements and phase, density and superfluid velocities, and find that the zero-point excitations of the soft quadratic Tkachenko modes lead in a large system to a loss of long range phase correlations, growing logarithmically with distance, and hence lead to a fragmented state at zero temperature. The vortex positional ordering is preserved at zero temperature, but the thermally excited Tkachenko modes cause the relative positional fluctuations to grow logarithmically with separation at finite temperature. The superfluid density, defined in terms of the transverse velocity autocorrelation function, vanishes at all temperatures. Finally we construct the long wavelength single particle Green's function in the rotating system and calculate the condensate depletion as a function of temperature.Comment: 11 pages Latex, no figure

    Dislocation-Mediated Melting in Superfluid Vortex Lattices

    Full text link
    We describe thermal melting of the two-dimensional vortex lattice in a rotating superfluid by generalizing the Halperin and Nelson theory of dislocation-mediated melting. and derive a melting temperature proportional to the renormalized shear modulus of the vortex lattice. The rigid-body rotation of the superfluid attenuates the effects of lattice compression on the energy of dislocations and hence the melting temperature, while not affecting the shearing. Finally, we discuss dislocations and thermal melting in inhomogeneous rapidly rotating Bose-Einstein condensates; we delineate a phase diagram in the temperature -- rotation rate plane, and infer that the thermal melting temperature should lie below the Bose-Einstein transition temperature.Comment: 9 pages, 2 figure

    Tkachenko modes as sources of quasiperiodic pulsar spin variations

    Full text link
    We study the long wavelength shear modes (Tkachenko waves) of triangular lattices of singly quantized vortices in neutron star interiors taking into account the mutual friction between the superfluid and the normal fluid and the shear viscosity of the normal fluid. The set of Tkachenko modes that propagate in the plane orthogonal to the spin vector are weakly damped if the coupling between the superfluid and normal fluid is small. In strong coupling, their oscillation frequencies are lower and are undamped for small and moderate shear viscosities. The periods of these modes are consistent with the observed ~100-1000 day variations in spin of PSR 1828-11.Comment: 7 pages, 3 figures, uses RevTex, v2: added discussion/references, matches published versio

    Tkachenko modes in a superfluid Fermi gas at unitarity

    Full text link
    We calculate the frequencies of the Tkachenko oscillations of a vortex lattice in a harmonically trapped superfluid Fermi gas. We use the elasto-hydrodynamic theory by properly accounting for the elastic constants, the Thomas-Fermi density profile of the atomic cloud, and the boundary conditions. Thanks to the Fermi pressure, which is responsible for larger cloud radii with respect to the case of dilute Bose-Einstein condensed gases, large vortex lattices are achievable in the unitary limit of infinite scattering length, even at relatively small angular velocities. This opens the possibility of experimentally observing vortex oscillations in the regime where the dispersion relation approaches the Tkachenko law for incompressible fluids and the mode frequency is almost comparable to the trapping frequencies.Comment: 5 pages, 1 figure; minor changes, now published as Phys. Rev. A 77, 021602(R) (2008

    Vortex Lattice Inhomogeneity in Spatially Inhomogeneous Superfluids

    Get PDF
    A trapped degenerate Bose gas exhibits superfluidity with spatially nonuniform superfluid density. We show that the vortex distribution in such a highly inhomogeneous rotating superfluid is nevertheless nearly uniform. The inhomogeneity in vortex density, which diminishes in the rapid-rotation limit, is driven by the discrete way vortices impart angular momentum to the superfluid. This effect favors highest vortex density in regions where the superfluid density is most uniform (e.g., the center of a harmonically trapped gas). A striking consequence of this is that the boson velocity deviates from a rigid-body form exhibiting a radial-shear flow past the vortex lattice.Comment: 5 RevTeX pgs,2 figures, published versio

    Vortex states of rapidly rotating dilute Bose-Einstein condensates

    Full text link
    We show that, in the Thomas-Fermi regime, the cores of vortices in rotating dilute Bose-Einstein condensates adjust in radius as the rotation velocity, Ω\Omega, grows, thus precluding a phase transition associated with core overlap at high vortex density. In both a harmonic trap and a rotating hard-walled bucket, the core size approaches a limiting fraction of the intervortex spacing. At large rotation speeds, a system confined in a bucket develops, within Thomas-Fermi, a hole along the rotation axis, and eventually makes a transition to a giant vortex state with all the vorticity contained in the hole.Comment: 4 pages, 2 figures, RevTex4. Version as published; discussion extended, some references added and update

    Pinning and collective modes of a vortex lattice in a Bose-Einstein condensate

    Full text link
    We consider the ground state of vortices in a rotating Bose-Einstein condensate that is loaded in a corotating two-dimensional optical lattice. Due to the competition between vortex interactions and their potential energy, the vortices arrange themselves in various patterns, depending on the strength of the optical potential and the vortex density. We outline a method to determine the phase diagram for arbitrary vortex filling factor. Using this method, we discuss several filling factors explicitly. For increasing strength of the optical lattice, the system exhibits a transition from the unpinned hexagonal lattice to a lattice structure where all the vortices are pinned by the optical lattice. The geometry of this fully pinned vortex lattice depends on the filling factor and is either square or triangular. For some filling factors there is an intermediate half-pinned phase where only half of the vortices is pinned. We also consider the case of a two-component Bose-Einstein condensate, where the possible coexistence of the above-mentioned phases further enriches the phase diagram. In addition, we calculate the dispersion of the low-lying collective modes of the vortex lattice and find that, depending on the structure of the ground state, they can be gapped or gapless. Moreover, in the half-pinned and fully pinned phases, the collective mode dispersion is anisotropic. Possible experiments to probe the collective mode spectrum, and in particular the gap, are suggested.Comment: 29 pages, 4 figures, changes in section

    Giant Vortex Lattice Deformations in Rapidly Rotating Bose-Einstein Condensates

    Full text link
    We have performed numerical simulations of giant vortex structures in rapidly rotating Bose-Einstein condensates within the Gross-Pitaevskii formalism. We reproduce the qualitative features, such as oscillation of the giant vortex core area, formation of toroidal density hole, and the precession of giant vortices, observed in the recent experiment [Engels \emph{et.al.}, Phys. Rev. Lett. {\bf 90}, 170405 (2003)]. We provide a mechanism which quantitatively explains the observed core oscillation phenomenon. We demonstrate the clear distinction between the mechanism of atom removal and a repulsive pinning potential in creating giant vortices. In addition, we have been able to simulate the transverse Tkachenko vortex lattice vibrations.Comment: 5 pages, 6 figures; revised description of core oscillation, new subfigur
    • …
    corecore